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ABSTRACT

It is known that the finite dimensional extensions of a symmetric
operator define extremal spectral functions of the operator. Finite dimensional
extensions exist, however, only for symmetric operators with equal deficiency
indices. In this report it is shown that self adjoint extensions defined by
the addition of maximal symmetric operators determine extremal spectral

functions for a symmefric operator with unequal deficiency indices.




EXTREMAL SPECTRAL FUNCTIONS OF A SYMMETRIC OPERATOR

Richard C. Gilbert

1. Spectral functions of a symmetric operator.

Let I—I1 be a symmetric operator in a Hilbert space 5,1 . If H
is a self adjoint operator in a Hilbert space 5, such that §1C %and

HIC H, then H is called a self adjoint extension of H, .

Suppose H is a self adjoint extension of Hl' If E(N) is the

spectral function of H and if P, is the operator in 5{ of orthogonal

1
projection on 5/1 , then the operator function El(k) = PlE(x) restricted

to ?l is called a spectral function of Hl' We shall say that the self
adjoint extension H defines the spectral function El()\) . There are in
general many spectral functions, since there are in general many different
self adjoint extensions. (The spectral functions of Hl can also be
characterized without going out of the space ﬁ'l' Sece Achieser and
Glasmann [1] and M. A. Naimark [4].) If 6, = 6’1’ then E/(\) is
called an orthogonal spectral function of Hl .

The family of spectral functions of H

1 is a convex set, i,e.

1

11 1 11
if El()\}. and El (\) are spectral functions of H

1’ and if &, p are

H 11

11 1
non-negative real numbers such that p +p =1, then p Bl()\) + i

111

is also a spectral function of Hl' A spectral function El()\) of Hl is

said to be an extremal spectral function if it is impossible to find two

1 11
different spectral functions El(x) s E1 (N) and positive real numbers

Sponsored by the Mathematics Research Center, U. 8. Army, Madison,
Wisconsin, under Contract No. DA-11-022-ORD-2059.
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p'y p'' such that El()\) = H'E'l()\) + }L”El”()\) .
It is the purpose of this report to identify some extremal spectral
functions of Hl . Extremal spectral functions are of interest because it is

often possible to construct the whole convex set from them.

# denotes the end of a proof.

2. Hermitian operators

In this section we collect some information about Hermitian operators.
Proofs are omitted because they are either direct verification or else are the
same as for a symmetric operator. (See [1].)

Definition 1. The linear operator H in the Hilbert space ? is
Hermitian if (Hf, g) = (f, Hg) forall f, ge /J(H) . An operator H is
symmetric if it is Hermitian and A—,Q(_I-ﬂ = 5, .

Definition 2. If H is Hermitian, we define the linear manifolds
T (M) and £ (M) by the equations L (N\) =@® (A -XE) and ZL(\) =

&, 0L . PI(N) is a subspace and is called a deficiency subspace

of H.

Theorem 1. - (X) has the same dimension for all N in the same
half-plane (i.e, IN>0 or IN <0),

Definition 3. If \ is a non-real number, let m = dim 7{(}\) ,

n = dim M(\) . Then, (m, n) are called deficiency indices of H

(with respect to \.)
Theorem 2. If H is Hermitian and IN # 0, tl’_len
(1) (H -\E) -1 exists and is bounded;

(2) U(N)=(HE -T\E)(H - \E) -l is an isqrﬁetry mapping pC (75) onto o@(k) ;
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(3) (U(N) -E)'1 exists, and H = (NU(\) - NE)(U(N) -E)“l.

U(N\) 1is called the Cayley transform of H.

Theorem 3. Let U be an isometric operator in %/ . Suppose
-1 :
that (U -~ E) exists. Then, if IN # 0, there exists & Hermitian operator

H such that U= U(\N). Infact, H= (AU - NENU - E) -1

Theorem 4, For fixed N, IN #0, the correspondence H~U(N)
between a Hermitian operator and its Cayley transform is a one-one
correspondence between fhe set of Hermitian operators H and the set of

-1
isometric operators - U for which (U - E) exists.

Theorem 5. If H1~Ul(x) R H2~U2(x) , then HlC I-Iz if and only

if Ul( \) C UZ()\) .
Theorem 6. H is closed .=. U(\) is closed .=.

AL () and £ (N\) are subspaces in %, .
Remark, If H is closed and I\ # 0, then @, =L (N) @ (N,

Theorem 7. If H is a closed Hermitian operator with deficiency
indices (m, n) (with respect to \), -H is a closed Hermitian operator

with deficiency indices (n, m) (with respectto \.)

Theorem 8. A subspace reduces H .=, % 1 reduces U(\) .

Theoren . -
If 52= &@ ﬁl and Hi is H restricted to @i while Ui(K) is U((N)

is restricted to I-Ii, then H, and I—I2 are Hermitian operators, Hi ~ Ui()\) s

1
H= H, ® H,, and U(\) = U, (N) @'Uz(x).
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In all that follows N will be a fixed non-real number, Hence, we

shall often write the Cayles'z transforms of H as U rather than U{\). . -

3. Self adjoint extensions of a symmetric- operator.

The following théorem, due.to M. A, Naimark [4], characterizes the
self adhjoint‘ extensions of a symmetric operator. |

Theorem 9. Let N be any fixed non-real number. Let H, be a’
closed symmetric operator with deficiency indic;es (ml, ﬁl) {with respect -
to N\) . Then every‘ self adjoint extension H of H,  is obtained as follows:'

1

(1) Let I—I2 be a closed Hermitian operator in %» w ith deficiency

2

indices (mz, nZ) (with respect to N ) satisfying m. + m_ =n, + n, m_<n

1 2 1 2 1°
(2) Let H0=Hl ® I-I2 in {; = ﬁl @ gz. (HO is therefore a closed

Hermitian operator with equal deficiency indices (m, + mz, n + n2) , and if

1 1
H ~U.,i=0,1,2, then U, =U, @ U,. Further; 7 (M=7.0x) ® 7. ),
i i 0 1 2 0 1 2
oM =70, 00 @770 )
(3) Let V be an arbitrary isometric operator mapping 7’}70(51) onto 7720()\)

satisfying the condition ¢ e 77]2()\), Vo e 7772()\)‘ implies ¢ = 0.
{4) Let A (H) be definedas all g=£f+ Vg -9, "where f ¢ .417(1—10) )
g ¢ M.
(5) If geAd(H), lot Hg=Hf+\gp VS
Then, H is a self adjoint extension in ? of I—I1 , and every self adjoint

extension of H1 is obtained in this way. We have that A (HZ) = Af(H) I %2.
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Definition 4. We say that H2 and V of theorem 9 define the

self'adjoint extension H .

Remark 1. What has been really done in theorem 9 is that V has
beén used to extend the Cayley transform U0 to ‘a unitary operator
U= UO ® V. The condition on V in (3) of the.orem.‘) gllows us to show
thatﬁ, (U -~ E) is dense in @/ and therefore U ié the Cayley transform
of a selfvadjdint' operator H. A (H) and H can be shown to be determiﬁed
as in (4) and(5).}Since UlCU, HlC H. |

.The condition on V also serves another purpose: It allows us to

say that U (and therefore H) is nof reduced by ‘3/1 s provided m2 #0 or

n29€0.

Remark 2. We can put the operator V into correspondence. with a
métriX‘ -(Vik) of operé.ltors guch that Vll W 1()\) —»‘77; l()\) ,V12 :sz(x)»ﬁ‘l(X),
V21:77l‘l()\) —»77(2()\) Voo :\77(2()\) —f\//)zz()\). ’I‘hé condition on V in (3) of

theorem 9 then becomes V

12go'=,0 implies ¢ = 0, Further,

A (Hl = {glg =fl -¢1+Vll<pl+‘Vlzgo2+f2 -¢2+V21¢1

+V

22‘P2’Where fl € (Hl)’ fZ € M(HZ)’(PI EW 1()\‘) ’

9, € 7}62(‘—):) }.
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If ée /j‘(H) R

+)»(V +V._: o) .

Ho=Hf) - hoj +MVpo)+V),0,) HH,E) 2117 "22%2

Iy 22
Rerﬁark .3 . If- H1 is a closed symmetric operator With deficiency
.indicies (ml, nl) “and ifl H2 is a closed Hermitian operator with deficiency
indici . s = < '
indicies (@2, nzl), such that m, + mz‘ n1 + nZ apd m2 <n;s then there
always exists an isometry V of 7%.1(_)(') @77(2(>T) onto 7'(1()\) ® 7722(>\)'
satisfying the conditi.on. that ¢ ¢ 7772(7\)', Ve € 7?{2(2\) implies ¢ = 0. For,
L let V map-Wz’(T\) _isometrically onto a subspace 7;71(>\)' of ‘ml(x) and
“ml(x) isometrically onto [‘ml()\), ©) 7711()\)] @ﬁ‘mz(x) .
We now give a thedrezﬁ which gives a more detailed analysis of the

structure of V.

Theorem 10. Suppose that 77? ) ,‘m ()\) , ()\) 7’)7 (\) are
Hilbert spaces and that V is an isometry which maps 7"7 (x ® 7%2(>\)
onto 77?1()\) @ 79?2(>\) . (Note that N has nothlng to do with the _theor'em.
and is retained onl*} as a, notational éonvenience.) If V= (Vik) in matrix

form- { note that each V,

ik is bounded by 1), suppose that Vlzga = 0 implies

-that ¢ =0 .. Then the following conclusions are true:
t1). I 7'7zl.m is defined by the equation 7 (\) = [vlzmz(x)]c

( ¢ indicates closure of a set) and if 711()\)_ is defined by

H,00 = T\ @ (0, then T () 'is the null space of vfz. Thus, |
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® ‘ - — —_ K% — C
. i - 1 = i / A .
V12 is one-one on "ml()\) . Further, 7722(.)\) [V1277/l( )]
(2) V='< = Vr-l maps A 1()\) onto a subspace of Vi l(_>:) , ‘'which we *

denote by % (V) . Thus, 7, (%) =V A (0, 7, (0 =V (%) .

(3) I 75("1(7\) is defined by the equation 2 D=7 N @ HMm,
then. V maps 7?71(7\) @7?(2(7\) isometrically o"nto-77?l(,>\) @7772()\) .

Thus, V,, 1 7,00 = H,00 .

‘(4) VZl is one-one on 7)[_1(—5:) , and # 1(7\)‘ is the null space of V21 .
: = = . C
W‘Z(K)‘ = [V2177/1(>\)‘] .

. ‘ . —— - sk c
. ) " _ |
(5) V21 is one-one on WZ()\) and A2 1()\) [VZlW/Z()\)] .

(6) If m, = dim 77/1(7\) » 0y = dim 7//l(x)', m, = dim‘ﬂz(‘f) ,n2=‘dim77?2(‘)\) ,

‘ = = di 7’[ N = di 77_2 <
then ml + mz ny + nz, m.2 dim 2()\.) dim l()\) <n

n, = dim‘hzz(x): dim ‘1/711(7\) <m.

l’

We may conveniently summarize the theorem by means of the following

picture:
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7ﬂl(k), n,

ml(x), m, .
~ V=V
\ v [
nE) =V ® | Try = 00 © )
= null space of V,, = null space of VlZ
» — - | | -1? - ' 1€
7.721()\) = 77?1()\) ©) 7Zl(>\) : | 1(>\) = [Vl;}’l.z(x)]
B c ’
= [Vumz()\)]
L%
‘f"z
Yo
N (N :
‘mz(x) , m, 2'( ) .on, ;
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Proof (1) ""l l()\) is the null s'pace of Vlz'; for, f e ‘ir’ll()\) =3

= “I (% * g = NREN
(£,V,,9) =0 forall ge iuz(x). . (V,£,9)= 0 forall ge M,(X)

— — koL— c .. = Ko~
mz()\) = [V12 ml(_)\)] ; for,. suppose ¢ ¢ 7)(2()\)‘,gJ. Vlzl’)’il()\) .
Then, (g, V,f)=0 forall f < (M) sor (V,,9, 1) =0 forall fehn,(N).

Therefore, V12g= 0, and g =0 since Vlz is one'—one..

A
3

(2) V = V—l maps i l()\) ‘onto a subspace ofuh’ll(T\); for

Vin Var
Vo= _
v‘12 Vo

Hence, V. T, (\) =V 0N CH 0.
(3) Clear, since Ty = VTN .
(4) V21 is one.—one on “h(l(x) ; for, suppose fe 77Zl(x) s V21f= 0.

= = h :{ = l =
Then, VE=V f+V, f=V fe Hlm - Let g =V, f=Vf, sothat |
;:: 3 13 h . . _ ._17‘ _)_\ V‘* "T( 7\ V>;< \/;( ._i
f=V'g=V,,g+V g. Then, since fe l( ),V g€ 1( )V ,9c¢ 2‘( )
we have that vfzg = 0. Since ge DN\, by (1) g=0. Thus, f=V g=0.

v/l 1(7\) .is the null space of V for, M 1()\) = V\hl(_):) and thus

21°
vV, =0 forall f e”hl("i). On the other hand, V,, is one-one on WWI(K).
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vz'lwz(x) C M (X ; for, if £eN(K) 5 (6V,,9) =(V, £9)=0,
.‘ - - 4 - % |
since 'nl()») is the null space of V. . Thus, N (ML VZl"hzz()\)
-and therefore .Vzlﬂz(x) C “Ml(x) . |
Wz()\) = [Vz'l"ﬁ(l(_i)]c; for, suppose g‘e’mz()\_) and

sk

g"‘vzﬁl 219

o £ N K £ - £ - 3k _‘
Stnce V_ T, (\) C Ty (N), V,9= 0. Thus, Vg=V,,g¢ M,(%).

(%) . Therefore, 0= (V,f, q) = (f,V, ) forall f <)

‘Let £=V'g. Then, g=Vi=V {+V,f, where g e M), V,E e (),

‘szf ewz(k) . Therefore, V 'Zf =0 and f=0. Whence, g=Vi=0,

1
(5) -VZl is one-one on WZ(K) ; for, suppose V;l'f = 0., Then,
0=(V,f,g) =(f,V,q) foral g e‘_ml(x) . Therefore, fJ_VZl‘ml(x)
and £f=0 by (4).
— — * c . -~ — . £
A) = N .
Wl( ) [VZlWZ( )]~ ; for, suppose fe7’)tl()\) ,fL VZl"mZ()\) .
E .
Then, 0.= (£, V21 g) = (VZIf’ g) forall g e"mz()\). Therefore

VZIf =0, and f=0 since v, is one-one on'iLl(T\) .

1
(6) ml + m, = n, + n, follows from the fact that V maps
X M (N i i A x
_l( ) @”}'KZ( ) isometrically onto 7”[1( ) @ 7?[2( ).
dim WZ(T\) = dim 77-?1(K) ; for, let {q)a} be a complete
orthonormal system in ‘7’)42(7\) . Then {Vl?fpa} is a fundamental set in

‘77210\) . (See Nagy [ 3] for definitions.) Therefore dim 7”72(7\) =

P{o,} = PV o } > dim ﬂl(-x), where P stands for cardinality. Similarly,

using Vy, , dim M (A) > dim P, (X) . Thus,m, = dim W ,(\)=dim 7 (M) <n,.
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Similarly, usin.g. VZl‘ and V:l’ né = dim~7"7zz()\) = dim.77-21(7\-) < m .
‘.-_(7) Clear froml (6) . ‘#
' Definition 5. A sélf adjoint extension H in CJ of a symmetric
bpe;at;jr Hl in 5,1 is said to be minimal if H is not reducéd by

‘?7.@ @lndr by any of its subspaces different from zero.

Theorem 11, (M.A. Naimark [4]) For each self adjoint extension
H in b, of a symmetric operator Hl in %l there exists a minimal

self adjoint extension HO‘ in @ such that

0
(1) @IC @/OC 9/;

(2) HlC HOCH;

(3) HO and H define the same spectral function of Hl .

Theorem 12, Suppose that Hl is a closed symmetric operator

and that I—I2 and V define a self adjoint extension H of H Let

1

I-IO be a self adjoint extension of Hl having the properties that

5,1 C (j’o C % and H, C H, C H. Then the following statements

are true:

(1) If we write 5,():{2‘/1@ ‘}3, 5(= 5/0‘(9 §4= (271(9 %3 ) 94,

(?72= %/3 @ %4, then H is reduced by @,4 and I—I=I—I0 @ H4, where

H4 is a self adjoint operator in §,4 .

(2) % C L0 L0, m,mC %nmzm C ?3.
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(3) I—I2 is reduced by 5, 4 and. H2= H3 ® H4, where H3 is
a clpsed Hermitian opérator in ? 3 with the same deficiency subspaces
M), P :
N,00 s TN as H,
(4) H, is definedby H, and V.
(5) H and HO define the same spectral function of Hlf

© Proof. " Since HIC I-IOC H, we have by theorem 5 that
| - L Ler ¢
U.Cu CU. Since U :i —— "} and .U : { —_— ’
1> "0 ot Yo Jo - |
" isom.

we must have that U : %4 —%t_o._, “).,4. Thus 54 reduces’ U, and ‘

by theorem 8, U = U0 @ U4,. H= HO @ H4, where H4 is-a self adjoint

operator in 5’4 with Cayley transform U4. This proves (1) .

We claim now that %4 C aCZ(K) : Let fe %4C %2.
Since {7 5 =77Zz(7\')_ ® “@2(-):) s f=1f'+ f'', where !¢ 7’732(7\) s

.

11 N = Tf! Y. B L L 1 1 1

£11 ¢ Az(x). Hence, Uf = Uf' + UE = V' + U, ' = V £ +V, £ + U8,
[7

. N 11 - [ 1 ; )
where Uf ¢ F'4C }(}2, Ui e «’CZ()\)L 72: Vot 67721()‘)C }J’l’
v, f! e77] () C r . Thus, V. f' = 0 and therefore f' = 0 by theorem 9.
22 2 3’2 12

We have, then, that f=f' ¢ o@z(f) and hence ?4C [2(7\) .

| B o
Since §4C 082()\) while U : 54 —y ?4 and

isom.,
onto

U: 5[:2(7\‘) 7 .Z:Z(X) , it follows that 64(: afz()\v) . By the preceding
§

paragraph and what we have just proved, 6]4C 462(7\) ~ [2()‘) . This

proves (2).
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isom

since U, = U on L (%), U, 1 £,(0) 2L, and
- isom. . : . ' _ ,
U, § ?4.' onto)I 94. Thus, /(},4 reduces U -and U‘2 =0, @ U4 ,
_ , isom. o
where Ué : "C‘z(-x) ©; Ei . —onto == L (K Q g . We note that

N - T Y@ML N Oh]=T ) I ) '
iy =T, @ LL, O ©F,l=T,m ® [af’/( ® 3/ I. Hence,.
. by theorem 8, HZ = I—I3 ® I—I4 where I—I3 is a closed Herml_tlan operator

- in f:k 3 with Cayley transform -U3 " and deficiency subspaces /’7? 2(7\')‘ P
( . : : Y

7iZé(x) . This proves -(3).

.By theorem 9, H3 and V define a self adjoint extension HB of
Hl in % 0= d ) ) af3 . vT.he Ca}./ley transform .UO of, I—IO is given by .
U =U on L (R V=T on T () @ T,(X) and Uy =T on
f(m<j§ .mmeﬁ;=xlﬁ)@7ﬂﬁ)am &fﬁgﬁ)®

: 6 = F . But sinc
[ L ()\) ® $4],U U on a O 5 = ato. But since UOC U,

- ) : = 7! = T3t :
UO—‘U.on JJ.CD Y3. Thu&.Ub, UL and H HO, sothm:fi is
defined by I-I3 and V. This proves (4).

As we have shown, H = HO ® I—I4 Thus, -E(\) = EO()\) ® E4()\)
and therefore E(\N) L = BO(}\.)‘f for all f e Efl . If P is the operator of
orthogonal projection of La' _bnto . %[1 and if PO‘ is the operator of

i ion S ﬁ E \ = = ‘ .
orthogonal projection Qf 370 onto (} 1’ PE(N) I PE(S)\ ) POEO()\ )y for all
fe fa 1’ S0 that_ H and H0 define the same sbectral function of H.

This proves (5). #
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Theorem 13. Let H bé a minimal self adjdint extension of
- the closed symmetric operator I—I1 . Suppose that for any bounded

self adjoint operator A in % with matrix represenfation

the property that A commutes with H implies that B= 0. Here E is .
the identity in L& 1 B %2 - %’l y C v %2 - ‘(}Z’ G is self adjoint.

Then, H defines an extremal spectral fﬁn'ction of I-I1 .

Proof. M. A. Naimark [5] has shown fhat the specfral function‘
El(X) of Hl defined by a minimal self adjoint extension H of H1 is
extremal'i_f and only if every bounded self adﬁoint operétor in 5/ which
commutes with H and satisfies the condition (Af, g) = (f, g) forall
f, g % is reduced by 5, 1° The operator .A ‘defined in the theorem
has the general form of every bounded self adjoint operator which satiéfiés
the condition (Af, g)=(f, g) forall f,qge br Further, B =0 means
that 5 1 reduces A. Thus, if the ;;roperty that A commutes Wifh H
implies that B = 0, we know that El()\) is extremal by the theorem of .

M. A. Naimark.

Remark. If A commutes with H, then A commutes with the

Cayley transform U of H. If we write U in matrix form, U ~ (Ujk') s
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where Ujk : 5, L 5’j’ i, k =1, 2, then the hypothesis that A commutes

with H implies the validity of the following equations:

Vg ¥ BU = U B+ U0

s
%

BLU) # OV, = Uy #Up08

B U12 + CU22= UZlB_+ UZZC .

4. Extremal spectral functions of symmetric operators with equal

deficiency indicies.

In this section we shall deduce implications of the hypothesis

/»Q(I-IZ) = {0} . Among these 'implications is the fact that the spectral function

is extremal,

Theorem 14. Let H be a self adjoint extension of the closed
symmetric operator Hl‘ Suppose that H is defined by I-I2 and V. Then

~ the following statements are equivalent:
(1 () = {0}.
(2) 7,0 =P, 00 = .

(3) A Ak, = {0}
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Further, /uo(Hz) = {0} -implies that

(1) 'ml =n ie., the deficiency indices of H

1 are equal;

1
(ii) H is minimal.
Proof. fhat‘( 1) implies (2) is clear from the definition of '
WZ(T\) and M 2(K) . Suppose, on the <.3ther hand, that ¢ 2(7\) =7.’}?2()'\.) = %,2 .
ﬂwngﬁl(ﬁz- xE5=%Z(H2—KE)={0}.Iffe,d%ﬂz),HZfof=o
and Hzf - Kf.= 0. Hence, (A -N)f= 0, and therefo're .f = 0. Thus,

,nQ(HZ) = {0}, and we have proved that (2) implies (1). -

~ By theorem 9, ,4/0(1-12) ==/va(H) ~ 52, so that (1) and (3) are
clearly equivalent. . |
Suppose, now, that /»Q(Hz) = {0}. Then '7772(-)_\) =7772()\) and -

' mz = ﬁz; By theorem 10, (7), m; =n, . This proves (i) . Since

.q,Q(HZ) = {0} implies that 7’)?2(7\) =7’)?2(>\)l' = 52 and therefore that
o@Z(K) = 4@2()\) = {0}, it follows from theorems 11 and 12 that H is minimal.

This proves (ii). #

Theorem 15, Let H, be a closed symmetric operator, Let H

1
be a self adjoint extension of Hl _defined by H2 and V. If //(Hz) = {0},

then the spectral function El(X) of I—Il defined by H is extremal.

Proof. By theorem 14, H is a minimal self adjoint extension of Hl .

Suppose the operator
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commutes with H. By theorem 13, we need only show that it follows

that B= 0.

By the remark to theorem 13, we have that BUZl = UlZB* and
t.ha_t- UZlB = BUlZ

We know, further, that U=V on mlm ® WZ(K) and that

vt eV e o 00 @ F2,(M) . Using the fact that

; Where U ~ (Ujk)‘ " is the Cayley transform of H.

: —

7, (%) =7}Zz(x) = ff'z’ we obtain, then, that BV ,A( (M) = BU 7 (X) =

S *;7;% N . M. - b ’ N : x )\ X i . K - N
Uy B 7N C Uy = Uy P, 00 = Vo P00 72,00 - Since V2, 04)
is dense }in77Z.2~(7\) = %—2 by theorem 10, and since B is b‘_oungled, it

follows that B E}ZCMI(K) .
imi 7 (% = 7 (N = *7.7_2 ) ¢ :. =
Similarly, BV217’711(>\) BUZl?zl(}\) [,IlzB ) C Ulzé )

qlzmz(x) = V127772()\) C#7 (M), and.theréfore B %Zcml(x) .

1 .
. Thus, B 5fzc7nl('x) AP L But T (V) A7V = {0},
-because M l(X)‘ and Px 1()\) are the deficiency subspaces of a symmetric
operator._ I—Ienc_é B=0 on [(} 5 #
‘Definition 6. Let H be a self adjoint extension of the closed

symmetric operator I—I1 . H is called a finite dimensional self adjoint

extension of Hl if %2 = 5, [©) %l is finite dimensional.

Remark 1. Theorem 15, is a modification.of a lemma of M: A. Naimark
[5]. By the use of a density argument we have dispensed with the as sumption

of Naimark of finite dimensionality of the extension.
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Remark 2. By use of theorem 15, M. A, Naimark [5] has shown
that every finite dimensional extension H of a closed symmetric operator

L This implies, in particular,

I—Il defines an extremal spectral function of H

that the orthogonal spectral functions of H1 are extremal.

Theorem 16, If H is a finite dimensional extension of a closed

" symmetric operator Hl , then Hl must have equal deficiency indices.

~ Proof. Suppose that H is defined by I—I2 and V. Then H‘2 is

a Hermitian operator in the finite dimensional space %, 5 Since

isom.. ' .
U, L, -%I,?(x), it follows that dim (%) = dim £ (A) .
Hence, dim 7712(7\)‘ = dim '7722()\) s loed, m, = nz. By theofem 10, (7),
ml = nl #

" In the next section we shall consider symmetric operators with
unequal deficiency indices. Theresults of the present section show that certain
statements cannot hold when the deficiency indices are unequal. - We

present some of these in the following theorem.

Theorem 17. Suppose that H is a self adjoint extension of the

closed symmetric operator,_Hl . Let H be defined by HZ .and V.

#n., - then

If rpl )
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l .
(1) m2=ﬁn2,

(20 7,00 # 7, ()

S (3) %,2 is not finite dimensional ;
(4) A (H,) # {0};

.(5)' (N # &2 and 7 (%) # %2

@of_.' (1) foilows from theorem 10, (.7') . (2) follows from (1).
(3) follows from thedrem 16 and the hypothesis‘ ml #Inl. (4) folows from
(25 and theorem 14,

We prove (5) as follows- Suppose m ()\) éz and therefore
£,(%) = {0}. since U, 1 L (X) = "nto,,c m,,(’ (\) = {0} and
therefore 722()\) = ?’2 also.” Hence, 2 2()\) = 7712()\) , which contradicts

(2) . A similar argument holds if 7772()\) = éz. - #

‘5. Extremal spectral functions of symmetric bperators with unequal

deficiency indices

We first introduce the notion of a partial isometry. (See Murray

and von Neumann [ 2] .)

Definition 7. A bounded linear operator W in a Hilbert space é.

is called a partial isometry if it maps a subspace £ isometrically onto

another subspaceff‘/ , while' it maps é ® £ onto {0}, & is called

4

the initial set of W, and % 1is called the final set of W.
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If W. is a partial isometry, thén the following statements hold:
(1) If P( € ) is the operator of orthogonal projection on € and

P(g) is the opefator of orthogonal projection on & , then P(£) =W¢W,

ol
x

P(%) =WW .

o

s ’ .
(2) U is a partial isometry with initial set. % and final set £ .

(3) As a mapping of \‘ﬁ onto £ , U is the inverse of U as &

. o . o
mapping of £ onto A .

Theorem 18, Sﬁppose that W is a partial isometry with initial .
set 7 and final set g . Let 77 = § O . Then, 7 =m* @7 ",
where ' '

isom.

(i) W:m? ﬂl_tg)‘m“;

(i) if fe @ Z' lim W' f=o0.

p—>00

R

ki - . ;
Proof., Let “_nzi (W) %,i=0,1,2,.. . Then the following
statements are true:
(a) 77Zi C M for i= lv, 2, v. . This is clear because W is a
partial isorhetry with initial set é and final set Y/
p

% n

(b} If f e77{n', where n is a positive integer then Wpf e7?7n for
p=1,2,..,n, and Wpf=Q for p > n. For,f fe 0 f:(W) g

for some g ¢¥ . Since WW = E, wPs = (Wﬂc)n—pg 5777n_p, 1<p<n.

¥ p>n, Wi=wPg=o0.

(c) If fe77?i, i=0,1,2, .., and if 'n is a positive integer, then
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(W) te70 . For, if £e7 , £=(W) g, whereg 7 . Therefore,

1.

‘ *n #* i+n
w = (W) m .
(W) f=( ), geM

(d)7??i L??fj if i#j. Por, suppose i <j, and let feMi,geWZj.

" . : . * 4 %
Then, there exists f ¢ # and 9 e” such that f= (W) f1,9=(W) g, -

1 .
\ . * i sk 3 i k4 % §-1 EE ] i
Hence, (£,9) = ((W ) £, (W) g;) = (W(W ) £, (W) Tg)) =(5,(W ) "g)=0, 1

since f, ¢ ,(W"‘)J'lglemj_iCm.
C 0
W “
Now let .772% = ), . 71t is a subspace of 7/ . Let
i=]1

11 - g : ' ‘
N = WL QM , We shall show that 7% and 7¢ !* satisfy (i) and (ii) .

 Since M =M @M and 9:72@772‘ + M %, and since
| i598: i
"W : M —— p , in order to prove (i) it is.sufficient to show that

. isom. o : 0
w:‘m*@—@—m@m*. Suppose fe?n?'. Then, f‘=z,fi,where
' i=1
£ ¢ , and W= Y, WE, . Since WE e, , by (b), we see that

i=1
: " ‘ isom, : '
Wfe X @M. Thus, W:t? - 77 @M. To show that the map is

. . - w . "{
onto, let ge?® @& »2*. Then, g= E fi’ where fieMi. If £f=W g,
. i=0 .

0 . .
f= Z W't eMm?, by (c). Further, W= WW g=g. Hence,
i=o *
isom.

-t .
Wt 22 N@E 7 ', This proves (i) .

=]
We now prove (ii) . Let fe X @727 . Then, f=z, fi,fie7?Zi.
) ’ i=0 7
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[22] [«] 0 I
, 2
By (b) , W= ) w'e = ), W' . Hence, lwPsel® =), lwPe 1% =
i=0 i=p i=p

o0

2 2 |
2, I l%. Thus, 1im WPl =0, and (i) is proved. #
j_:p 1 p—»OO

Theorem 19. Let N be a fixed non-real number. Suppose that
Hl is a clos;ed symmetric operator in %' 1 with deficiency indices (m, n)
(with respect to N}, m# n. Let H be a self adjoint extension of H1
defined by I—I2 and V,. where H2 is a closed Hermitian operator with

deficiency indices (0, m -n) if m>n and (n-m, 0) if m <n.

Then the spectral function define_d by H is extremal.

Proof. Assume that m >n. The case m <n then follows by
interchanging the roles of ™ and )\ in theorem 9 and defining H by
g and V'

2 * )
By theorem 11 there exists a minimal self adjoint extension

H, of H, such that E}IC %OC &, H CH,CH, and H, and H

define the same spectral function of H1 . By theorem 12, HO‘ i; defined
by V and a Hermitian operator H3 with the same deficiency subspaces as
HZ . Since we can always consider HO instead of H, if necessary,it
follows that without loss of generality we can consider H to be a minimal

self adjoint extension.

Since 77’12(1) = {0} and £ 2(K) = %2', we have that if f e &2,
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Uf ¢ Zz(x)C %2. Hence,

(a) U,,f= 0 forall feb,z.

1
Eu;thgr, Uf = U'ZZf for all f e Er , 3 Whence

1s0m. .
{b) U22 : 6 2—9~n~to—} vcz()\) . U22 ‘is thus'a partial isometry in é 5 -
with intial set @ , and final set L ,(A) , while ng is a partial isometry

with initial set £ 2()\) and final set @ ,- We have that

s ’ ¢
E = P( ?2) =U,,U,,, while P(L,0\) =00,

Now let A be a bounded self adjoint operator in ﬁ with matrix

representation

where B : %2 - %l , C: &2 g ‘572, C is self adjoint, and suppbse that

A commutes with H. By theorem 13, if we can show B =0, we are through.

By the remark to theorem 13, the following equations hold:

BUZl = UlZB =0 and BU22 = UllB.

On 7 l(X) , U_ =V__ and therefore BV2177? l()\)- =BU_. 7 (%) = {0}.

21 21 2l 1

Since by theorem 10, V2177Z l(—):) is dense in 2/ 2()\) , B'7772(>\) = {0}, i.e.,
BP(??Z'Z()\)) = 0.

From BU22 = UllB’ we have that BUZZUZZ‘ = UllBUZZ’ or by {b)




~24- #397

BP(.,C‘Z(x)) =U BU* . Adding this with BP(7Z,())) =0, we obtain that

11
B = UllBU:2 . Iterating this equation we obtain that B = U B(U ) for
every positive integer p. Since |l Ull" <1, Il B£ll < sl (Uzz) f”

‘for each f e %,2.
By theorem 18, -"CZ(K) =M ®mM ¥, where U, 777 1,

and if fe 7(0) @M, then lim ”(U:z) Pell =0, But if

. pr® ’
) isom. - isom. . isom.
U, s ONO%% 15 | then U OO 1 and UM 2y 7pu,

This means that U and th_erefor_e H is reduced by mr, a subspacé of

%2 . Since H' is a minimal self adjoint extension of
, = {0}. Hence, @ , =M ,(\) @M *, and therefore if f e § 5

tim (0,0 ¢l = 0. smoe leel < Iall (0%, Pell for cach £ f
p—> - : - 2

and for every positive integer p, it follows that B=0 on g 5 #

Remark. Since the operator HZ in theorem 19 is a Hermitian
operator with deficiency indices (0, m-n) or (n-m, 0), it may seem that
we are dealing with a wider class of operators than the maximal symmetric
operators. That this is not so is shown by theorem 20.

Lemma. If U is a unitary operator of ‘(} onto 5, » then (U - E) -1

exists if and only if # (U - E) is dense in ?/ .

Proof. Suppose & (U - E) is dense in 9 . We wish to show

that (U - E) -1 exists. Suppose (U -E) £f= 0. From this equation it follows
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that (U -E)f=0. Hence, forall g e %, 0=((U -E)f,q) =

(£,{U-E)g), l.e., fLHA(U-E). Thus, £=0,.

Suppose, on the other hand, that (U - E) . exists. We wish
to prove that #Z (U -.E) is dense in ?, . Suppose that 0= ({,(U-E)g)
forall g« fy. Then, 0 =({(U-E)f, ) for all ge @ and therefore (U-E)f = 0.

Hence, (U-E) f=0 and f=0. #

Theorem 20. If H is a Hermitian operator with deficiency indices
(0, n) or (n, 0), then H is.a miximal symmetric operator. If H is a :
Hermitian operator with deficiency indices (0, 0), then H is a self adjoint

operator. _ : ‘

Proof. The second statement follows immediately from the first,
since a symmetric operator with deficiency indices (0, 0) is self adjoint.

Suppose that H has deficiency indices (n, 0) . We shall show

that H is a symmetric o‘perato'r {and therefore maximal symmetric.) From
this it follows that if H has deficiency indices (0, n), then since -H

has deficiency‘ indices (n, 0), ~H and therefore H is symmetric in this

‘case also,

isom.
If U is the Cayley transform of H, U: £ (N) Ont°>,,€ (\) = 5 .

Suppose we define W by the equations:

Wi= Uf forall fed (),

Wf=0 forall fe”(\) .
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Then W 1is a partial isometry, and by theorem 18 £ (7\) =t @,
fsg .
OO 1t and if fe (N) @7, lim WPE=0. We

p—>00

where W ;g 1t

S8 Sy N
have that U:m "™ 2% and wemt L% (X) @', Since

U is the Cavyley transform of H, (U - E) -1 exists by theorem 2, and
therefore (U - E)M ' is dense in 7227 ' by the preceding lemma.

We claim further that (U - E))p ! is dense inw (N) @ !,
Suppose g e M(N) &M ' and 0= (g, (U - E)f) forall feX ', Letting
g=g'+g', where g' e W (N), g'" e ', we have that forall fe) ',

0

1

U"tg = ¢! Therefore, g = Ug!'' = Wg. Iterating this equation, g = ng,
and therefore g = lim ng = 0, Thus, (U ~E) ) ' is dense in
p—> e ]
VRS ECRLER
Since (U - E)m*' isdensein 7 ' and (U - E)»' is dense in

[N

m (7\) E mt, (U -~E) [(‘K) is dense in {} . Because by theorem 2,

/be(H) = ﬁ(U - E), H is a symmetric operator. #

(g, (U-E)f) = ((U -E)g,f) = (Ug-g", 0. Since U g-g" e,
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